

OSIS - Development and Operations

Hildeberto Mendonça

© 2016 Hildeberto Mendonça

Contents

Introduction . 1

Development . 2

The Development Environment . 3
Installing and configuring Git . 3
Configuring Git to Simplify GitHub Authentication 4
Installing and Configuring PostgreSQL . 6
Installing and Configuring Django . 7
Installing OSIS . 8
Installing OSIS Portal . 9

Architecture and Design . 13
The Layers . 13
Internationalization . 14
Programming Good Practices . 15
Security . 15

Development Workflow . 17
GitFlow Workflow . 17
Following GitFlow . 19

Operations . 28

Maintenance . 29

Introduction

1

Development

2

The Development Environment
The development environment is certainly the first thing to do to start contributing toOSIS. In
this section, we explain in details how to do that in aDebian-based Linux distribution (Debian
Linux, Ubuntu, Mint, etc.). This is the recommended operating system for development and
deployment.

If your operating system is not based on Debian Linux then you can rely on a virtual machine
as a development environment. For the virtual machine, we suggest VirtualBox¹ as virtual
runtime and Ubuntu Mate² as operating system. Follow the installation instructions on their
respective websites according to your own platform. When the Ubuntu virtual machine is
created and running, execute the following command to make the operating system aware
of the virtual runtime:

$ sudo apt-get install virtualbox-guest-dkms virtualbox-guest-x11

This is an open source book, so if you are passionate about OSIS but Debian Linux is not really
your cup of tea then consider contributing to this book by describing how you managed to
prepare the development environment on your favorite operating system.

We go through the installation and configuration of OSIS and OSIS Portal as well as all their
dependencies and tools. At the end, both applications will be fully up and running on your
machine, but it doesn’t mean you can do exactly the same thing to make them available in
production. There are a few additional configurations to increase availability and security
that are discussed in the operations part later on.

Installing and configuring Git

Git is a distributed version control system used tomanage the source code of OSIS. The source
code is necessary to develop and deploy OSIS and we start the instructions by explaining how
to install and configure it. We can use apt-get to install Git:

¹https://www.virtualbox.org
²https://ubuntu-mate.org

3

https://www.virtualbox.org
https://ubuntu-mate.org
https://www.virtualbox.org
https://ubuntu-mate.org

The Development Environment 4

$ sudo apt-get update
$ sudo apt-get install git

The update command downloads package lists from remote repositories to get information
about the newest versions of packages and their dependencies. This way, we make sure we
are getting the last version of Git and all other dependencies. Then install git performs
the installation. Next, we add some personal information in the local Git installation to make
sure you are well identified in all commits:

$ git config --global user.name "[Firstname] [Lastname]"
$ git config --global user.email "[firstname.lastname]@domain.com"

Since version 2.0, Git has adopted a new behavior to pull and push commits while in a branch.
When you execute git push or git pull Git will consider pushing or pulling just for the
current branch. Before, these commands would push and pull all branches. But the change
to this new behavior is voluntary, not automatically imposed. So, we have to explicitly say
we have to move from the old behavior to the new one. To do that, execute the following
command:

$ git config --global push.default simple

Configuring Git to Simplify GitHub Authentication

For the moment, every time we push code to GitHub the prompt asks for a username and
password.We can bypass this step by registering a SSH key. To do that, we first checkwhether
there is already an existing SSH key we can reuse:

$ ls -al ~/.ssh

If files with the extension .pub are listed then one of them can be reused to authenticate to
GitHub. If not, then we can create one:

The Development Environment 5

$ ssh-keygen -t rsa -b 4096 -C "[firstname.lastname]@domain.com"
Enter file in which to save the key (/Users/[user]/.ssh/id_rsa): [Press enter]
Enter passphrase (empty for no passphrase): [Type a passphrase]
Enter same passphrase again: [Type passphrase again]

The next step is to add the new key - or an existing one - to the ssh-agent. This program runs
the duration of a local login session, stores unencrypted keys in memory, and communicates
with SSH clients using a Unix domain socket. Everyone who is able to connect to this socket
also has access to the ssh-agent. First, we have to enable the ssh-agent:

$ eval "$(ssh-agent -s)"

And add key to it:

$ ssh-add ~/.ssh/id_rsa

The next step is to make GitHub aware of the key. For that, we have to copy the exact content
of the file id_rsa.pub and paste into GitHub. To make no mistake about the copy, install a
program called xclip:

$ sudo apt-get install xclip

And then copy the content of the file id_rsa.pub in the clipboard:

$ xclip -sel clip < ~/.ssh/id_rsa.pub

The command above is the equivalent of opening the file ∼/.ssh/id_rsa.pub, selecting
the whole content and pressing Ctrl+C. This way, you can paste the content on GitHub
when required in the next steps. On the GitHub side:

• Login at https://github.com
• In the top right corner of the page, click on the profile photo and select Settings
• In the user settings sidebar, click SSH keys
• Then click Add SSH key
• In the form, define a friendly title for the new key and paste the key in the Key field
• Click Add Key to finish with GitHub

To make sure everything is working, lets test the connection:

The Development Environment 6

$ ssh -T git@github.com
The authenticity of host 'github.com (207.97.227.239)' can't be established.
RSA key fingerprint is 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48.
Are you sure you want to continue connecting (yes/no)? yes
_
Hi [username]! You've successfully authenticated, but GitHub does not
provide shell access.

This configuration works only when we use a ssh connection to GitHub. To verify that, go
to one of your local GitHub projects and check the url pointing to the server:

$ cd ~/python/projects/osis/osis
$ git remote -v

If the url starts with https:// then you are using https instead of ssh. In this case, you
should change the url to the ssh one:

$ git remote set-url origin git@github.com:uclouvain/osis.git

The automatic authentication should work after that.

Installing and Configuring PostgreSQL

PostgreSQL is the only database supported by OSIS. In theory, the Django ORMwould make
the application database-independent, but we do not test OSIS with other databases, thus we
cannot guarantee that it works on other databases such as MySQL or Oracle. Fortunately,
PostgreSQL has a very good reputation, a large community and a generous documentation.

TIP: If you really need a database different from PostgreSQL then you could contribute to
the project by testing OSIS on your favorite database.

Execute the following commands to install PostgreSQL:

$ sudo apt-get install postgresql
$ sudo su - postgres -c "createuser -s $USER"
$ sudo apt-get install libpq-dev python3-dev

The first command installs PostgreSQL and creates a user named after the current logged OS
user. The library libpq-dev is also installed for development purposes.

The Development Environment 7

Creating the Database

Before moving forward, make sure you installed PostgreSQL, as explained in the section
<<installing-postgresql>>. Then, follow the steps below to create the backend database:

$ createdb osis_backend_dev
$ createuser osis_usr -P // Inform the password 'osis' when asked for.
$ psql -d osis_backend_dev

=# grant connect on database osis_backend_dev to osis_usr;
=# revoke connect on database osis_backend_dev from public;
=# \q

Recreating the Database

After many tests and experiments the database may become dirty and error prone. That’s
why it’s a good practice to recreate it from time to time. Execute the following commands to
proceed:

$ dropdb osis_backend_dev
$ createdb osis_backend_dev
$ psql -d osis_backend_dev

=# grant connect on database osis_backend_dev to osis_usr;
=# revoke connect on database osis_backend_dev from public;
=# \q

Installing and Configuring Django

The Django installation and all other dependencies depends on where we place the OSIS
repository in our machine. So, we start by creating the directory where the repository will
be placed.

$ mkdir -p ~/python/projects/osis

The repository osis is a full Django project with several modules. To clone the repository
locally we executed the following commands:

The Development Environment 8

$ cd ~/python/projects/osis
$ git clone git@github.com:uclouvain/osis.git

Install the Python virtual environment and other system dependencies:

$ sudo apt-get install build-essential python-virtualenv libjpeg-dev libpng-dev

In the new repository, create a virtual environment to isolate all dependencies of the project:

$ cd osis
$ virtualenv --python=python3.5 venv

Installing OSIS

Start the virtual environment and install the dependencies:

$ source venv/bin/activate
(venv)$ pip install -r requirements.txt

Create the data structure in the database:

(venv)$ python manage.py migrate

At this point we have two options:

1. we create a super user and go on with an empty database or
2. we load the demonstration data that already contains a superuser

To create the super user and continue with an empty database:

The Development Environment 9

(venv)$ python manage.py createsuperuser
Username (leave blank to use '[linux-user]'):
Email address: your@emailaddress.com
Password:
Password (again):
Superuser created successfully.

You will need this user to login on OSIS for the first time and be able to create other users.

To load the demonstration data that already contains a superuser:

(venv)$ python manage.py loaddata demo_data.json

The demonstration data create a super user with the following credentials:

Username: osis
Password: osisosis

The demonstration data also create several other users. The password for each user is the
username typed twice (e.g. user: antonin password: antoninantonin).

Now, we can run the application:

(venv)$ python manage.py runserver

You can leave the server running while you are developing. It will take into account all
changes in your code, except the changes in the model. In this case, we have to stop the
server to execute the commands makemigrations and migrate as shown above. When we
have finished your daily work, we can deactivate the virtual environment:

(venv)$ deactivate

Installing OSIS Portal

OSIS Portal is the front office part of OSIS and it is designed to run independently as long
as it has the necessary data to deal with. In normal circunstances OSIS and OSIS Portal
are integrated through a message queueing system, that guarantees data exchange without
coupling.

The Development Environment 10

We already did many things for the OSIS installation that we benefit now to install OSIS
Portal, such as Git, PostgreSQL and other native dependencies. So, we start with what is
different and then we install other two dependencies, which are RabbitMQ and CouchBase.

In terms of database, we have to create a second database, but reusing the same user:

$ createdb osis_front_dev
$ psql -d osis_front_dev

=# grant connect on database osis_front_dev to osis_usr;
=# revoke connect on database osis_front_dev from public;
=# \q

In terms of application, let’s move to the osis folder and clone the repository:

$ cd ~/python/projects/osis
$ git clone git@github.com:uclouvain/osis-portal.git

Next, let’s create an exclusive virtual environment for OSIS Portal:

$ cd osis-portal
$ virtualenv --python=python3.5 venv

Then, we perform the usual Django project procedures, which are the activation of the virtual
environment, the installation of dependencies, the creation of the database structure and the
creation of a super user:

$ source venv/bin/activate
(venv)$ pip install -r requirements.txt
(venv)$ python manage.py migrate
(venv)$ python manage.py createsuperuser

Finally, we are ready to run the application:

(venv)$ python manage.py runserver

We can see in the console that the application is missing things. To fullfil this latest
requirements we are going to install next RabitMQ and CouchBase.

The Development Environment 11

Installing and Configuring RabbitMQ

RabbitMQ³ is an open source robust messaging system used to exchange asynchronous
messages between OSIS and OSIS Portal. It’s a highly scalable integration mechanism that
eliminates coupling between applications in a very simple and elegant way.

The installation of RabbitMQ is optional, only necessary if OSIS Portal is used together
with OSIS. If it is not installed then the following message appears during the application
initialization:

“Messaging System not available! OSIS cannot communicate with OSIS Portal.”

The best approach to install the latest version of RabbitMQ it through its own repository. The
following command adds the repository to your software updated:

$ echo 'deb http://www.rabbitmq.com/debian/ stable main' |
sudo tee /etc/apt/sources.list.d/rabbitmq.list

To avoid warnings about unsigned packages, add the public key to your trusted key list:

$ wget -O- https://www.rabbitmq.com/rabbitmq-release-signing-key.asc |
sudo apt-key add -

Finally, run the following commands to update the package list and to install rabbitmq-
server package:

$ sudo apt-get update
$ sudo apt-get install rabbitmq-server

After running these commands successfully RabbitMQ is up and running on your machine.
Next time you initialize OSIS it will promptly connect to RabbitMQ and the message above
doesn’t appear anymore.

³https://www.rabbitmq.com

https://www.rabbitmq.com
https://www.rabbitmq.com

The Development Environment 12

Installing CouchBase

CouchBase is a NoSQL document database with a distributed architecture for performance,
scalability, and availability. It is used by OSIS Portal to store data optimized to render web
pages and other forms of documents.

To install CouchBase access its website and download the Community Edition 4.0 or superior
for Debian/Ubuntu systems. Then install it with the following command:

$ sudo dpkg -i couchbase-server-community_4.0.0-ubuntu14.04_amd64.deb

After the installation process, access http://localhost:8091 to configure the local instance. Just
accept all default values for development purposes. Then, install the libraries used by Python
to connect to CouchBase:

$ wget http://packages.couchbase.com/clients/c/libcouchbase-2.5.7_ubuntu1404_amd64.tar
$ tar -xf libcouchbase-2.5.7_ubuntu1404_amd64.tar
$ cd libcouchbase-2.5.7_ubuntu1404_amd64
$ sudo dpkg -i libcouchbase2-core_2.5.7-1_amd64.deb
$ sudo dpkg -i libcouchbase2-bin_2.5.7-1_amd64.deb
$ sudo dpkg -i libcouchbase-dev_2.5.7-1_amd64.deb

OSIS Portal is set to connect to CouchBase with no additional configuration in a development
environment.

Architecture and Design

The Layers

Model

Themodel is composed of entities entitled to represent the business’ properties and behaviors
as well as preserve their state over timewith the help of a database. In the Django Framework,
entities are represented by classes that inherit from django.db.models.Model. Each class
of the model represents a table in the database. Instances of the class are records in that table.
Attributes of the class are equivalent to columns of the table. Every change in this abstraction
is reflected in the database through a mechanism known as database migration.

A migration consists of a Python script that updates the database structure according to a
set of changes made in the model classes. After one or more changes in the model, you can
generate a new migration file by executing the following command:

(venv)$ python manage.py makemigrations

and then apply the migration:

(venv)$ python manage.py migrate

Django effectively makes things simple, but when we change the model of an application
that is deployed multiple times in multiple places, then the database migration is no longer
trivial.

1. Modify the entity classes as needed.

User Interface

Testing The User Interface Using Selenium

Selenium relies on HTML elements’ ids to identify and interact with user interface elements.
In other words, if an element doesn’t have an id then Selenium cannot reference it in its test

13

Architecture and Design 14

scripts. Therefore, it is important that every element the user interacts directly - such as text
fields, links or buttons - must have an id.

The amount of ids to be defined in a single page is not negligible. Since ids must not repeat
in the same page, at some point we will lack creativity to think about more unique values to
identify the elements. To help with this, we have defined a list of prefixes, one for each type
of element, listed in the table below:

Prefix Element
Type

Prefix Element
Type

Prefix Element
Type

bt_ Button pnl_ Div tab_ Tab
chb_ Checkbox rdb_ Radio button txa_ Text area
fil_ File field lnk_ Link txt_ Text field
form_- Form num_- Numeric field

hdn_ Hidden field slt_ Combobox

Some examples of use:

<!-- Text field -->
<input type="text" id="txt_start_date">

<!-- Hidden field -->
<input type="hidden" id="hdn_academic_calendar">

<!-- Combobox field -->
<select id="slt_academic_year">

Internationalization

OSIS has adopted a different approach when it comes to internationalization (I18N). Text
messages within Python code and template files are keywords instead of text in plain English.
Hardcoding keywords forces us to create a translation file for each supported language,
instead of relying on hardcoded messages for the default language. For example, instead
of:

<p>{% trans 'Hello World' %}</p>

we use:

Architecture and Design 15

<p>{% trans 'hello_world' %}</p>

which is translated into English and French respectively:

locale/en/LC_MESSAGES/django.po
msgid "hello_world"
msgstr "Hello World!"

locale/fr_BE/LC_MESSAGES/django.po
msgid "hello_world"
msgstr "Salut monde!"

It is important to add that we add translations manually in the translation files instead
of using ./manage.py makemessages. We have noticed some strange beheviors, such as
confusing “all” with “ill”, and the translation files are changed much more than necessary,
causing lots of conflicts when multiple developers contribute to the translations.

Once the translations are done, we finally compile the messages into .mo files:

$./manage.py compilemessages

Only .po files are committed to the repository. .mo files are ignored in the .gitignore file.

Programming Good Practices

Every function returns one and only one value.

The name and the documentation of the function is consistent with what the function really
does.

Security

An important part of the security is the protection of the server where the application runs.
However, it is equally important to take some precautions while developing the application to
avoid adding vounerabilities unintentionally. Full attention should be given to the following
points:

Architecture and Design 16

1. avoid passing user related identifiers (person, tutor, program manager, etc.) in URLs
(?tutor_id=34 or /score_encoding/print/34/) because an attacker can try sev-
eral numbers in sequence to access information he has no privilege to.

2. while importing a file, verify whether the user has the right to add/modify in the target
tables.

Development Workflow
The development workflow defines the sequence of tasks and events that takes place during
the development of OSIS, with the goal of producing stable releases. The workflow is
controlled by Git, because of its flexible branching features, and complemented by tools
directly integrated to it, such as GitHub and GitKraken.

Git is flexible enough to support any workflow we have in mind. But, instead of reinventing
the wheel, we started from a widely used workflow called GitFlow then we built and adapted
it for our special needs.

GitFlow Workflow

GitFlow⁴ was created by Vincent Driessen back in 2010 and it has been recognized as the de
facto workflow for Git. The following figure illustrates how it works.

⁴http://nvie.com/posts/a-successful-git-branching-model/

17

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/

Development Workflow 18

GitFlow by Atlassian

Development Workflow 19

Following GitFlow

The code repository is organized in three fixed branches:

• dev: agregates developers’ contributions that are intended to be in production, but they
still need to be validated.

• qa: at the end of the sprint, when all features are frozen, the branch dev is merged into
qa to allow testers to validate the release before it gets into production.

• master : once the version in qa is fully validated, it is merged into the branch master,
which is the one to be deployed in production.

Developers should not commit directly to any of these branches. By convention, these
branches can only be changed if there is an issue in the https://github.com/uclouvain/osis/issues[issue
tracking tool] that justifies the creation of an exclusive branch for that issue. For instance:
if the issue’s number is #234 then its respective branch is named issue#234, created to
isolate the changes described in the issue. To create a new branch for the issue, perform the
following commands:

$ git checkout dev
$ git pull origin dev
$ git checkout -b issue#234

The first command enters in the branch dev, if the developer is not already in there. Within
the branch dev, the latest commits in the remote branch origin/dev are downloaded and
merged within the local branch dev. Then, the new branch issue#234 is created from the
local branch dev.

The developer in charge of the issue #234 changes the code within the branch issue#234.
Two commands are very useful to keep track of what has been done:

$ git status
$ git diff models.py

The first command shows all created, modified, removed and untracked files that are
candidates to be committed. The second shows the changes in one of the modified files.
When we are ready to commit, we should decide whether all changed files will be included
in the commit or just a subset of them. To include all files:

Development Workflow 20

$ git commit -a -m "New entities added."

To include a subset of files, we have to add each file individually:

$ git add base/models/academic_year.py
$ git add base/models/academic_calendar.py
$ git add base/models/__init__.py
$ git commit -m "New entities added."

Committing often is encouraged. All commits are done locally, thus there is no risk of
conflicts until all commits are sent to the server. The push option sends all commits in a
local branch to the server, identified by origin.

$ git push origin issue#234

Branching to Fix a Bug

Fixing Mistakes

Version control doesn’t always happens smoothly. We will certainly face some problems and
fortunately Git is very gentile on which concerns recovering from mistakes. These are some
common situations we may face during development.

Moving to another branch before finishing the work in the current
branch

Sometimes we are working in a branch and a more urgent problem arrives, requiring us to
move to or create another branch. In this case, we have to commit all changes in the current
branch before moving to another one, otherwise we risk to have our changes to the current
branch commi## Following the Git Workflow

The code repository is organized in three fixed branches:

• dev: agregates developers’ contributions that are intended to be in production, but they
still need to be validated.

• qa: at the end of the sprint, when all features are frozen, the branch dev is merged into
qa to allow testers to validate the release before it gets into production.

Development Workflow 21

• master : once the version in qa is fully validated, it is merged into the branch master,
which is the one to be deployed in production.

Developers should not commit directly to any of these branches. By convention, these
branches can only be changed if there is an issue in the https://github.com/uclouvain/osis/issues[issue
tracking tool] that justifies the creation of an exclusive branch for that issue. For instance:
if the issue’s number is #234 then its respective branch is named issue#234, created to
isolate the changes described in the issue. To create a new branch for the issue, perform the
following commands:

$ git checkout dev
$ git pull origin dev
$ git checkout -b issue#234

The first command enters in the branch dev, if the developer is not already in there. Within
the branch dev, the latest commits in the remote branch origin/dev are downloaded and
merged within the local branch dev. Then, the new branch issue#234 is created from the
local branch dev.

The developer in charge of the issue #234 changes the code within the branch issue#234.
Two commands are very useful to keep track of what has been done:

$ git status
$ git diff models.py

The first command shows all created, modified, removed and untracked files that are
candidates to be committed. The second shows the changes in one of the modified files.
When we are ready to commit, we should decide whether all changed files will be included
in the commit or just a subset of them. To include all files:

$ git commit -a -m "New entities added."

To include a subset of files, we have to add each file individually:

Development Workflow 22

$ git add base/models/academic_year.py
$ git add base/models/academic_calendar.py
$ git add base/models/__init__.py
$ git commit -m "New entities added."

Committing often is encouraged. All commits are done locally, thus there is no risk of
conflicts until all commits are sent to the server. The push option sends all commits in a
local branch to the server, identified by origin.

$ git push origin issue#234

Branching to Fix a Bug

Fixing Mistakes

Version control doesn’t always happens smoothly. We will certainly face some problems and
fortunately Git is very gentile on which concerns recovering from mistakes. These are some
common situations we may face during development.

Moving to another branch before finishing the work in the current
branch

Sometimes we are working in a branch and a more urgent problem arrives, requiring us to
move to or create another branch. In this case, we have to commit all changes in the current
branch before moving to another one, otherwise we risk to have our changes to the current
branch committed in another branch. So, first add your changes and commit:

$ git commit -a -m "New entities added but still incomplete."

and then move to another branch:

$ git checkout issue#261

or create another branch from dev:

Development Workflow 23

$ git checkout dev
$ git pull origin dev
$ git checkout -b issue#262

It also happens that we start fixing an issue (#262) but we forget to checkout its respective
branch (issue#262). In this case, we have to commit only the files related to the current branch
and leave in the workspace the changes related to another branch:

$ git add quick_sort.py
$ git commit -m "Sort algorithm started."
$ git checkout issue#260

The files that were not committed in the previous branch will be available for commit in the
branch issue#260.

This practical approach of moving from a branch to another while leaving some files in the
workspace may not work if at least one of the files we have left in the workspace was also
changed in the branch issue#260. We may see a message like this:

From https://github.com/uclouvain/osis
* branch dev -> FETCH_HEAD
Updating 57c4a6d..9839a25
error: Your local changes to the following files would be overwritten

by merge:
__openerp__.py

Please, commit your changes or stash them before you can merge.
Aborting

In this case, we have to commit local changes before moving to another branch, as we first
explained. However, things can get worse when the current branch is related to a closed issue,
thus committing to it doesn’t make sense anymore. In this case, we can use git stash. It
moves all changes in the current workspace to a transit area that can be recovered later on.
To move all changes to the stash area, simply type:

$ git stash

Now, if we type git status we find the working directory clean, which means we can
move to another branch. To see the stashes we have stored we can use:

Development Workflow 24

$ git stash list

After moving to another branch, we can recover the changes from the stash using:

$ git stash apply

but if there is more than one stash in the list we can apply a specific one by referencing its
identifier:

$ git stash apply stash@{2}

Fixing the latest commit message

$ git commit --amend -m "message"

When we work with branches it’s very common to fool around with commits. There are
many branches locally and sometimes we forget to switch to the proper branch and we end
up committing on the wrong branch. When it happens before pushing the commits to the
server, we can undo the last commit done with the command:

$ git reset --soft HEAD~1

But if the commit was already pushed to the server, it is still possible to undo the push as long
as other people have not pushed to the same branch after the wrong push. So, after reseting
local branches to the desired state, we can force a push to overwrite the remote branch:

$ git push origin dev -f

It is also possible undo remote modifications by reverting commits. Git figures out how to
undo the changes introduced by the commit and appends a new commit with the resulting
content. We first update our local branch, perform the revert and push back to the origin:

Development Workflow 25

$ git checkout dev
$ git pull origin dev
$ git revert 7b4ff2cc82db88d1f5778babdcefae08266b37d0
$ git push origin dev

Stop tracking a file without deleting it locally:

$ git rm --cached [file]

Deleting remote branches:

$ git push origin --delete issue#530

tted in another branch. So, first add your changes and commit:

$ git commit -a -m "New entities added but still incomplete."

and then move to another branch:

$ git checkout issue#261

or create another branch from dev:

$ git checkout dev
$ git pull origin dev
$ git checkout -b issue#262

It also happens that we start fixing an issue (#262) but we forget to checkout its respective
branch (issue#262). In this case, we have to commit only the files related to the current branch
and leave in the workspace the changes related to another branch:

$ git add quick_sort.py
$ git commit -m "Sort algorithm started."
$ git checkout issue#260

The files that were not committed in the previous branch will be available for commit in the
branch issue#260.

This practical approach of moving from a branch to another while leaving some files in the
workspace may not work if at least one of the files we have left in the workspace was also
changed in the branch issue#260. We may see a message like this:

Development Workflow 26

From https://github.com/uclouvain/osis
* branch dev -> FETCH_HEAD
Updating 57c4a6d..9839a25
error: Your local changes to the following files would be overwritten

by merge:
__openerp__.py

Please, commit your changes or stash them before you can merge.
Aborting

In this case, we have to commit local changes before moving to another branch, as we first
explained. However, things can get worse when the current branch is related to a closed issue,
thus committing to it doesn’t make sense anymore. In this case, we can use git stash. It
moves all changes in the current workspace to a transit area that can be recovered later on.
To move all changes to the stash area, simply type:

$ git stash

Now, if we type git status we find the working directory clean, which means we can
move to another branch. To see the stashes we have stored we can use:

$ git stash list

After moving to another branch, we can recover the changes from the stash using:

$ git stash apply

but if there is more than one stash in the list we can apply a specific one by referencing its
identifier:

$ git stash apply stash@{2}

Fixing the latest commit message

$ git commit --amend -m "message"

When we work with branches it’s very common to fool around with commits. There are
many branches locally and sometimes we forget to switch to the proper branch and we end
up committing on the wrong branch. When it happens before pushing the commits to the
server, we can undo the last commit done with the command:

Development Workflow 27

$ git reset --soft HEAD~1

But if the commit was already pushed to the server, it is still possible to undo the push as long
as other people have not pushed to the same branch after the wrong push. So, after reseting
local branches to the desired state, we can force a push to overwrite the remote branch:

$ git push origin dev -f

It is also possible undo remote modifications by reverting commits. Git figures out how to
undo the changes introduced by the commit and appends a new commit with the resulting
content. We first update our local branch, perform the revert and push back to the origin:

$ git checkout dev
$ git pull origin dev
$ git revert 7b4ff2cc82db88d1f5778babdcefae08266b37d0
$ git push origin dev

Stop tracking a file without deleting it locally:

$ git rm --cached [file]

Deleting remote branches:

$ git push origin --delete issue#530

Operations

28

Maintenance
When a maintenance window is planned for OSIS, it is possible to prevent users about this
event directly on the user interface, so they can plan their usage according to the application’s
availability.

The Application Notice is available in the administration and allows the administrator to
create temporary notices to be shown in all screens of OSIS. This way, all active users are
notified during the period the notice is set to be shown. To create or maintain notices, go to
the Administration > section Base > subsection Application Notices.

Application Notice form

29

Maintenance 30

In the form, define a subject, a short notice, and the period in which the notice should become
visible. The result is shown in the following image.

Application Notice shown in the user interface

Within the publishing period, the notice appears right below the main menu and on top of
the main content.

It is recommended to create a new notice for every event, instead of changing existing ones.
This way, we preserve the history, which may help to make decisions in the future. But
nothing blocks you to use the same notice over and over again.

	Table of Contents
	Introduction
	Development
	The Development Environment
	Installing and configuring Git
	Configuring Git to Simplify GitHub Authentication
	Installing and Configuring PostgreSQL
	Installing and Configuring Django
	Installing OSIS
	Installing OSIS Portal

	Architecture and Design
	The Layers
	Internationalization
	Programming Good Practices
	Security

	Development Workflow
	GitFlow Workflow
	Following GitFlow

	Operations
	Maintenance

